One-sided Almost Specification and Intrinsic Ergodicity

نویسندگان

  • VAUGHN CLIMENHAGA
  • RONNIE PAVLOV
چکیده

Shift spaces with the specification property are intrinsically ergodic, i.e. they have a unique measure of maximal entropy. This can fail for shifts with the weaker almost specification property. We define a new property called one-sided almost specification, which lies in between specification and almost specification, and prove that it guarantees intrinsic ergodicity if the corresponding mistake function g is bounded. We also show that uniqueness may fail for unbounded g such as log logn. Our results have consequences for almost specification: we prove that almost specification with g = 1 implies one-sided almost specification (with g = 1), and hence uniqueness. On the other hand, the second author showed recently that almost specification with g = 4 does not imply uniqueness. This leaves open the question of whether almost specification implies intrinsic ergodicity when g = 2 or g = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of Mixing Properties on Intrinsic Ergodicity in Symbolic Dynamics

We study various mixing properties for subshifts, which allow words in the language to be concatenated into a new word in the language given certain gaps between them. All are defined in terms of an auxiliary gap function f : N → N, which gives the minimum required gap length as a function of the lengths of the words on either side. In this work we focus mostly on topological transitivity, topo...

متن کامل

TEL-AVIV UNIVERSITY RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES SCHOOL OF MATHEMATICAL SCIENCES Tail Invariant Measures of The Dyck-Shift and Non-Sofic Systems

Among the most familiar systems in symbolic dynamics are the subshifts of finite type, or SFT’s for short. SFT’s are relatively easy to analyze, and have many pleasant properties such as intrinsic ergodicity and unique ergodicity with respect to the tail. A larger class, which has the desirable property of being closed under factors, is that of sofic systems. This class of systems retains many ...

متن کامل

Intrinsic Ergodicity via Obstruction Entropies

Bowen showed that a continuous expansive map with specification has a unique measure of maximal entropy. We show that the conclusion remains true under weaker non-uniform versions of these hypotheses. To this end, we introduce the notions of obstructions to expansivity and specification, and show that if the entropy of such obstructions is smaller than the topological entropy of the map, then t...

متن کامل

Intrinsic Ergodicity beyond Specification: Β-shifts, S-gap Shifts, and Their Factors

We give sufficient conditions for a shift space (Σ, σ) to be intrinsically ergodic, along with sufficient conditions for every subshift factor of Σ to be intrinsically ergodic. As an application, we show that every subshift factor of a β-shift is intrinsically ergodic, which answers an open question included in Mike Boyle’s article “Open problems in symbolic dynamics”. We obtain the same result...

متن کامل

Almost specification ‎and ‎renewality‎ in spacing shifts

‎Let $(Sigma_P,sigma_P)$ be the space of a spacing shifts where $Psubset mathbb{N}_0=mathbb{N}cup{0}$ and $Sigma_P={sin{0,1}^{mathbb{N}_0}: ‎s_i=s_j=1 mbox{ if } |i-j|in P cup{0}}$ and $sigma_P$ the shift map‎. ‎We will show that $Sigma_P$ is mixing if and only if it has almost specification property with at least two periodic points‎. ‎Moreover‎, ‎we show that if $h(sigma_P)=0$‎, ‎then $Sigma_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016